Rút Gọn Và Tính Giá Trị Biểu Thức Lớp 9

     

A. Phương pháp rút gọn biểu thức và tính giá bán trị

1. Tìm điều kiện xác định của biểu thức chứa căn thức

Để tra cứu điều kiện xác định của biểu thức chứa căn, ta nên ghi ghi nhớ các lý thuyết dưới đây:

*

2. Rút gọn gàng biểu thức đựng căn bậc hai

Để rút gọn gàng biểu thức chứa căn thức bậc hai, ta thực hiện công việc sau:

+ Bước 1: tìm điều kiện khẳng định để biểu thức đựng căn thức bậc hai gồm nghĩa.

Bạn đang xem: Rút gọn và tính giá trị biểu thức lớp 9

+ Bước 2: dùng những phép thay đổi đơn giản với thu gọn biểu thức.

3. Tính giá trị của biểu thức lớp 9

+ Bước 1: Tìm điều kiện xác minh của biểu thức, rút gọn biểu thức (nếu cần).

+ Bước 2: Đối chiều điểm x = x0 với điều kiện xác định..

+ Bước 3: Nếu quý hiếm x = x0 thỏa mãn đk thì gắng vào biểu thức để tính được giá trị của biểu thức.

+ Bước 4: Kết luận.

Xem thêm: Dđổi Lệnh Tắt Trong Cad 2016, Hướng Dẫn Thay Đổi Lệnh Tắt Trong Autocad 2015

4. Các cách chuyển đổi biểu thức chứa căn bậc hai

Vận dụng các quy tắc bên dưới đây:

a. Đưa thừa số ra ngoài dấu căn

Với hai biểu thức A, B

*

b. Đưa quá số vào trong vết căn

*

c. Khử mẫu mã của biểu thức lấy căn

Với nhị biểu thức 

*

d. Trục căn thức ở mẫu

Với nhì biểu thức A, B mà B > 0 ta có:

*

5. Giải pháp rút gọn biểu thức chứa căn bậc hai

Phương pháp rút gọn:

– Phân tích đa thức tử và mẫu thành nhân tử;

– kiếm tìm ĐKXĐ (Nếu việc chưa mang lại ĐKXĐ)

– Rút gọn gàng từng phân thức (nếu được)

– tiến hành các phép chuyển đổi đồng tốt nhất như:

+ Quy đồng (đối cùng với phép cùng trừ) ; nhân ,chia.

+ quăng quật ngoặc: bằng cách nhân đơn ; nhiều thức hoặc cần sử dụng hằng đẳng thức

+ Thu gọn: cộng, trừ những hạng tử đồng dạng.

+ so sánh thành nhân tử – rút gọn

* Chú ý: Trong mỗi việc rút gọn thường có những câu thuộc các loại toán: Tính quý giá biểu thức; giải Phương trình; bất phương trình; tìm cực hiếm của đổi thay để biểu thức có mức giá trị nguyên; tìm giá trị nhỏ tuổi nhất ,lớn nhất…Do vậy ta phải áp dụng các phương thức giải tương ứng, tương thích cho từng một số loại bài.

Ví dụ: cho biểu thức: 

*

a/ Rút gọn gàng P

.b/ Tìm quý hiếm của a nhằm biểu thức có giá trị nguyên.

Xem thêm: Bộ Đề Thi Học Kì 1 Toán 12 Có Đáp Án Và Lời Giải Năm 2021, Đề Thi Hk1 Toán 12

Giải:

a/ Rút gọn P

*

b/ Tìm giá trị của a để P có giá trị nguyên:

*

Vậy với a = 1 thì biểu thức P có giá trị nguyên.

B. Bài bác tập rút gọn và tính quý giá của biểu thức


Bài 1: Tìm đk để các biểu thức sau đây có nghĩa: